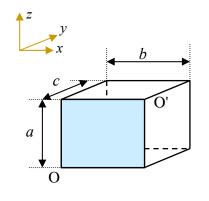
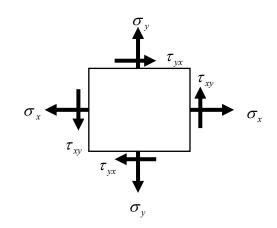

問題1 寸法 a [m], b [m], c[m] を持つ角材を大きさFの力で引っ張る(右下図)。このときの体積変化 ΔV [\mathbf{m}^3] を a, b, c, ポアソン比

e, x方向のひずみ $arepsilon_x$ を使って表せ。

(略解) x, y, z 方向のひずみをそれぞれ ε_x , ε_y , ε_z とすると, $a'=a(1+\varepsilon_z)$, $b'=b(1+\varepsilon_y)$,

 $c'=c(1+\varepsilon_x)$ と書くことができる。


従って体積変化 ΔV は,


 $\varDelta V = a'b'c' - abc = abc(1+\varepsilon_x)(1+\varepsilon_y)(1+\varepsilon_z) - abc \cong abc(\varepsilon_x + \varepsilon_y + \varepsilon_z) = abc(1-2e)\varepsilon_x \quad \text{ if } \delta_\circ$

ただし、ポアソン比
$$e=-\frac{横ひずみ}{軸ひずみ (縦ひずみ)}=-\frac{\varepsilon_y}{\varepsilon_x}=-\frac{\varepsilon_z}{\varepsilon_x}$$
 の関係を使っている。

<計算> $c=0.50\,\mathrm{m}$, $a=b=0.15\,\mathrm{m}$, e=0.30 , $\varepsilon_{\mathrm{x}}=0.005$ として体積変化を計算せよ。

問題 2 (教科書 24 頁<問題 8>2.) ある面にせん断応力が発生しているときには、必ずこれに垂直な方向にも大きさの等しいせん断応力が発生していることを示せ。言い換えると、右下の図で $au_{yx}= au_{xy}$ であることを示せ。なお、これらのせん断応力を共役せん断応力と呼んでいる。

