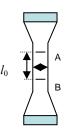
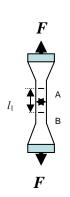
問題 1 直径 5 cm の棒を 15000 kgw で縦方向に引っ張ったところ,0.0006 cm 細くなった。ポアソン比はいくらか。ここで,縦弾性係数(ヤング率)を $E=2.1\times10^6 \text{ kgw/cm}^2$ とする。

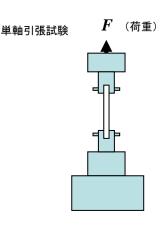
(略解)
$$e = -\frac{\mathcal{E}_1}{\mathcal{E}} \cong 0.3297$$

問題 2 棒鋼の両端を 40° C で固定して 10° C に下げた。棒にはどんな応力がどれほど起きたか。ここで,縦弾性係数を $E=2.1\times10^{6}$ kgw/cm² とし,線膨張係数を $\alpha=11.5\times10^{-6}$ /° C とする。

(略解)
$$\sigma' = -E \frac{l'-l}{l} = -E \frac{\lambda}{l} = -E \alpha (t'-t) \cong 724.5 \text{ kgw/cm}^2 (\cong 7.1 \times 10^7 \text{ N/m}^2)$$

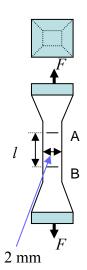

問題3 径 2 cm , 長さ 120 cm のばね鋼に 10 t の引っ張り張力がかかっている。弾性エネルギーはいくらか。縦弾性係数を $E=2.1\times10^6 \text{ kgw/cm}^2$ とする。


(略解)
$$U = Vu = V \frac{\sigma^2}{2E} \cong 89 \text{ N} \cdot \text{m} = 89 \text{ J}$$


問題 4 半径 r=1.26 cm の円柱棒について単軸 引張り試験を行う。引張力 F=1,000 N を作用させ

る前に、棒の上に $l_0 = 30$ cm (標点距離)の距離で離れている $A \ge B$ の 2 点に目印をつける。

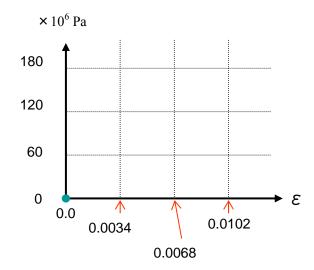
力をかけたあとで、 $A \ge B$ の距離は I_1 =31.5 cm と測定されている。棒に発生した引張りひずみと平均引張り応力を決めよ。



(略解)
$$\varepsilon = \frac{\Delta l}{l_0} = \frac{l_1 - l_0}{l_0} = 0.050$$
 、 $\sigma = \frac{F}{A} = \frac{1000 \, \text{N}}{\pi r^2 \text{cm}^2} \cong 201 \, \text{N/cm}^2 = 2.01 \times 10^6 \, \text{N/m}^2$

問題 5 人間の骨皮質組織の弾性係数の決定。試験片のサイズと形状は右図を参照。

- (1) 引っ張り力(応力)とひずみを決定しなさい。
- (2) 応力-ひずみ線図を書きなさい。
- (3) 骨の弾性係数 E を決めなさい。


荷重, F (N)	標点距離, <i>l</i> (mm)	
0	5.000	
240	5.017	
480	5.033	
720	5.050	

(1) 引っ張り力(応力)とひずみ

<i>F</i> (N)	$\sigma(N/m^2 \text{ or Pa})$	l (mm)	ε (mm/mm)
0		5.000	
240		5.017	
480		5.033	
720		5.050	

(2) 応力-ひずみ線図

(3) 弹性係数
$$E =$$
 GPa (1 GPa = 1×10^9 Pa)