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(0.1) Let f : X — C be arelatively minimal fibration of curves of genus g > 1 over a
smooth projective curve C' defined over an algebraically closed field k of characteristic
zero, and let K be the rational function field of C. We assume that there exists a
section O of f. For such a fibration, we can define the Mordell-Weil group to be
the group of the K-rational points of the Jacobian J of the generic fiber I'/K of f.
Under the suitable condition, the Mordell-Weil group Jr(K) is a finitely generated
abelian group, so we define the Mordell-Weil rank r to be the rank of its free part.
In this note we first prove the following theorem which gives an upper bound of the
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Abstract

We will give an upper bound of Mordell-Weil rank r for relatively minimal
fibrations of curves of genus g > 1 on rational surfaces. Under the assumption
that a fibration is not locally trivial, we have r < 4g+4. Moreover the maximal
case (r = 4g + 4) will be studied in detail. We determine the structure of such
fibrations and also the structure of their Mordell-Weil lattices introduced by
Shioda.

Introduction

Mordell-Weil rank r for fibrations of genus g on rational surfaces X.

Theorem A.(cf. Theorem 2.8) Let X be a smooth rational surface with a relatively

minimal fibration f : X — P of curves of genus g > 1. Then we have

r = rankJp(K) < 4g + 4.



Moreover we have the equality v = 4g+4 if and only if f : X — P! is a hyperelliptic
fibration with Kgc/Pl = 4g — 4 such that all fibers of [ are irreducible. Here Ky/p1 =

Kx @ f*(Kpi) denotes the relative canonical bundle of f.

(0.2) If f: X — P! is a relatively minimal rational elliptic surface with a section,
it can be obtained as the minimal resolution of its Weierstrass model, and It is easy
to see that all fibers of f are irreducible if and only if its Weierstrass model is smooth.
Moreover we can easily construct a smooth Weierstrass fibration f : X — P! such
that X is a rational surface. The Mordell-Weil rank of such a fibration is maximal
(=8) because we always have Kg(/Pl = 0 from the theory of elliptic surfaces due
to Kodaira [Kod]. When g > 2, we can also give a series of examples of rational
surfaces X with fibrations of curves of genus g whose Mordell-Weil rank is maximal,
i.e., 7 = 4g + 4. Hence we see that the upper bound 4¢g + 4 is best possible.

Let 7 : ¥, — P! be the Hirzebruch surface of degree e with 0 < e < g. Then
we can find a very ample complete linear system whose general members are smooth
hyperelliptic curves of genus g. (For detail, see §3). We take a linear Lefschetz pencil
of the linear system and obtain a fibration f : X — P! by blowing up the base points
of the pencil. We can show that such a fibration has the maximal Mordell-Weil rank
49 + 4 (cf. Proposition 3.7).

Conversely, we can show the following theorem.

Theorem B. (Cf. Theorem 4.1.) Let X be a rational surface with a fibration f :
X — P! of genus g > 2. Assume that the Mordell-Weil rank is mazimal, i.e.,
r = 49 + 4. Then X is obtained as above, that is, f : X — P! is obtained as a
blowing up of a linear pencil of hyperelliptic curves on the Hirzebruch surface 3, with
0<e<yg.

(0.3) In [Sh1], [Sh2|, Shioda introduced the theory of Mordell-Weil lattices for the
fibrations of elliptic curves and also curves of genus g > 2. In the case of rational
elliptic surfaces, Mordell-Weil lattices with maximal rank (= 8) are isometric to the
unique even unimodular positive definite lattice of rank 8, Eg. The lattice Eg plays
a very important role as a frame lattice in his theory of Mordell-Weil lattices of
the rational elliptic fibration. Even in the higher genus case, we can determine the
structures of Mordell-Weil lattices with maximal rank (=4g+4) as a corollary to
Theorem B.

Theorem C. (Cf. Proposition 3.10.) Let X be a rational surface with a fibration
f: X — P! of genus g > 2. Assume that the Mordell-Weil rank is mazimal, i.e.,
r=4g + 4. Then the Mordell-Weil lattice 1s unique up to isometries. In fact it 1s a
torsion free positive-definite unimodular lattice L, whose intersection diagram (i.e.,
Dynkin diagram) is given in figure 1 in Proposition 3.10.

We note that L; is nothing but Eg, hence L (g9 > 2) is a natural generalization



of Es. Here are ideas which we use in the Proof.s of the above theorems. Theorem A
is a consequence of Xiao’s inequality [Xiao] and Konno’s result [Kon| which gives the
affirmative answer to Conjecture 1 in [Xiao]. To prove Theorem B, we use Theorem
A and a refinement of Tan’s lemma in [Tan| which shows that a rational surface
with hyperelliptic fibrations of genus g with maximal Mordell-Weil rank is a double
covering of P! x P! whose branch locus is a smooth divisor with bidegree (29 + 2, 2).
After some birational transformation, we see that such fibrations are obtained by the
blowing up of base points of hyperelliptic pencils on ¥,.. Theorem C follows from
Theorem B and an explicit calculation of intersection pairings of divisors on surfaces.

We are grateful to Professor Konno and Professor Tan for sending us their inter-
esting preprints. We also would like to thank Professor Shioda for helpful and kind
comments. Finally, we would like to thank to the referee for useful comments and
pointing out mistakes in Theorem 4.1 and Proposition 4.2 in the first version of this

paper.

1 Mordell-Welil lattices

We review basic notations and results on Mordell-Weil lattice according to Shioda
[Sh1], [Sh2]. Let k be an algebraically closed field and K = k(C) the rational function
field of a smooth projective curve C' defined over k. Let I'/K be a smooth curve of
genus g > 0 defined over K with a K-rational point O € T'(K), and let Jr/K denote
the Jacobian variety of I'/K. We define the Mordell-Weil group of I'/K to be the
group of K-rational points Jr(K'). Then the Mordell-Weil group is a finitely generated
abelian group if the following condition (*) is satisfied (cf. [L]):

(*) The K/k-trace of Jr is trivial.

Shioda’s main idea in [Shl] and [Sh2| is to view this Mordell-Weil group Jr(K)
(modulo torsion) as a Euclidean lattice with respect to a natural pairing defined
in terms of intersection theory on an associated surface.
Let
f: X —C

be the relatively minimal fibration of curves passociated with given I'/K. By this,
we mean that X is a smooth projective surface, f is a projective morphism with
generic fiber I'/K and there are no exceptional curves of the first kind in any fiber.
A K-rational point P € ['(K) defines a rational section of f, hence defines a regular
algebraic section of f. Therefore there is a natural correspondence between the set
of K-rational points I'(K) and the set of sections of f, and for P € I'(K) we write
(P) the section regarded as a curve in X.



Let NS(X) be the Néron-Severi group of X. Then NS(X)/torsion admits the
intersection pairing and Hodge index theorem implies that its signature is (1,p — 1)
where p = rankNS(X) is the Picard number of X.

Let T denote the subgroup of NS(X) generated by (O) and all irreducible com-
ponents of fibers of f. The sublattice T is called the trivial lattice. Then we have the
following fundamental result due to Shioda.

Theorem 1.1. (Cf. [Shi], [Sh2]).

Under the assumption (*), there is a natural isomorphism of groups
(1.2) Jr(K) ~ NS(X)/T.

In the following, we also assume that: (**) NS(X) is torsion-free. This condition
is satisfied when X is a rational surface. Let U denote a rank 2 unimodular lattice
spanned by (O) and F the class of fiber, and let ¥ = {v € C(k)| f*(v) is reducible}.
Moreover for each v € ¥, we define T, to be a negative-definite sublattice spanned
by the irreducible components of f~1(v) which do not intersect the zero section (O).
Then we have the decomposition of the trivial lattice 17" as follows.

(1.3) T=U® ®DexTs.

Let us set r = rankJp(K), which we call the Mordell-Weil rank of I'/K. Then, from
(1.2) and (1.3), we have the following formula:

(1.4) r=p—2-> (m,—1)

vEY

where m, denotes the number of irreducible components of f~!(v). In particular, if
all fibers of f are irreducible, then we have

(1.5) r=p—2.

Let L = T+ C NS(X) be the orthogonal complement of 7" in NS(X). Shioda
[Sh1], [Sh2| called L the essential sublattice, and it is easy to see that L is a negative
definite lattice of rank r. We define the dual lattice L* of L by

L"={ze€L®Q| (z,y) €Z forall ye L},

where (z,y) denotes the intersection pairing on NS(X).
The following lemma and theorem are due to Shioda, and we refer it to [Sh2].
Lemma 1.6. Under the conditions (*) and (**), there is a unique homomorphism

(1.7) ¢:Jp(K) — NS(X)®Q



which splits the isomorphism (1.2), i.e. for any P € Jr(K) we have
$(P)= Dpmod T®Q, ¢(P) LT

where Dp is a horizontal divisor on S corresponding to P € Jp(K) = Pic’(I)(K)
under (1.2); for instance, we have Dp = (P) for P € I'(K) C Jpr(K). The kernel of
this homomorphism is the torsion part Jp(K )iy of Jr(K) and we have

Im(¢) C L*.

Theorem 1.8. Define the symmetric bilinear form on the Mordell-Weil group Jr(K)
by
<P,Q>=—(4(P),¢(Q)) € Q (P,Q € Jn(K)).

Then it induces the structure of a positive-definite lattice on Jr(K)/Jr(K)ior-

The lattice (Jp(K)/Jr(K)tor, <,>) is called the Mordell-Weil lattice of I'/K, or
of the fibration f : X — C. The narrow Mordell-Weil lattice Jr(K)° is a sublattice
of the Mordell-Weil lattice Jp(K) such that Jp(K)° ~ L/T C NS(X)/T. We can also
define it as a group of sections of the identity component of the Néron model over C' of
Jr/K. It is easy to see that if all fibers of f are irreducible, the narrow Mordell-Weil
lattice coincides with the whole Mordell-Weil lattice, i.e. Jp(K)® ~ Jp(K).

Theorem 1.9. The narrow Mordell-Weil lattice Jr(K)°® is isometric to the opposite
lattice L~ of L. Here the opposite lattice of L 1s a lattice obtained by putting the
minus sign on the pairing on L.

Theorem 1.10. Assume that the Néron-Severi lattice NS(X) of X is unimodular and
torsion-free, (e.g. X is a rational surface). Then we have the following commutative
diagram whose morphisms are natural isometries.

JF(K)/JF(K)tO'I‘ = (Li)*
(1.11) U Y
Jr(K)° L.

1

Theorem 1.12. Under the assumptions in Theorem 1.10, assume moreover that
all fibers of f are irreducible. Then the Mordell-Weil lattice Jp(K) is a torsion free
lattice isometric to the unimodular lattice Jp(K)° ~ L~ where L is the orthogonal
complement of the trivial lattice T generated by the zero section (O) and the class of
a general fiber F'.



2 Bounds of Mordell-Welil rank

In this section, we will give an upper bound of Mordell-Weil rank for fibration of
curves of genus g on rational surfaces. From §2 to the last, we assume that the base
field k is an algebraically closed field of characteristic zero. The important results we
need in this section are Xiao’s inequality and Konno’s result. Let f : X — C be
a relatively minimal fibration of genus g > 1 over a non-singular projective curve C.
Denote A(f) = deg Jswx/c where wx/c is the relative canonical sheaf of f. Assume
that f is not locally trivial. Then A(f) > 0. Note that the converse is also true. (See
for example [BPV, III, Theorem 18.2].)

Let Kx/c = Kx @ f* (K;') be the relative canonical bundle. We define the slope
A(f) as the following ratio:

(2.1) Mf) = Kx o/ AS)-

By an easy calculation and the relative Riemann-Roch theorem, we have
(2.2) K% = K% —8(9(C) = 1)(g = 1),

(2.3) A(f) = x(Ox) = (9(C) = 1)(g — 1).

Now the following theorem follows from Xiao’s inequality [Xiao] and Konno’s
result [Kon].

Theorem 2.4. Let f : X — C be as above and assume that f is not locally trivial
and g > 1. Then we have

(2.5) Af) =z 4(g—1)/g.

Moreover suppose that A(f) = 4(g — 1)/g. Then f : X — C is a hyperelliptic
fibration, i.e., the general fibers of f are hyperelliptic curves.

Proof. When g > 2, the first assertion is nothing but Theorem 2 in [Xiao|. The second
assertion follows from Proposition 2.6 in [Kon], which gives the affirmative answer to
Conjecture 1 in [Xiao|. In the case of ¢ = 1, since f is relatively minimal,we always
have Kg(/c = 0, which implies (2.5).

From now on we assume that X is a rational surface. For such a relatively minimal
fibration f : X — C of genus g, C must be the projective line P! because ¢(X) = 0.
Moreover it is easy to see the following lemma.

Lemma 2.6. Let f : X — P! be a relatively minimal fibration of genus g > 1 such
that X is a rational surface. Then the condition (*) is satisfied, that is, K/k-trace of
Jr 18 trival.



Proof. 1f the K/k-trace is not trivial, then the Mordell-Weil group is not finitely
generated. On the other hand, since the base is a curve P!, we have the isomorphism

Picy p1 (P') = Pic(X)/Pic(P"),

where Picx/p: is the relative Picard functor for f. By using theory of the Néron
model of Jr and its relation to the relative Picard functor, we see that the Mordell-
Weil group Jp(K) is isomorphic to a subquotient of Picx,pi(P'). (We refer these to

[9.5, BLR].) Since X is a rational surface, Pic(X) is isomorphic to NS(X) which is a
finitely generated abelian group. Therefore we see that Jp(K) is finitely generated.

For a fibration f : X — P! of genus ¢ > 1 such that X is a rational surface, we
can easily see that

(2.7) A(f)=x(0x)=(0-1(g-1)=1+(9g—1)=g.
Therefore we have A(f) = g > 0, which shows that f is not locally trivial.

Theorem 2.8. Let X be a rational surface with a fibration f : X — P! of curves
of genus g > 1 which is relatively minimal. Let Jp(K) be the Mordell-Weil group of
this fibration and r = rankJp(K) its Mordell-Weil rank. Then we have

(2.9) r < 4g + 4.

Moreover we have r = 4g + 4 if and only if f : X — P is a hyperelliptic fibration
with Kgf/Pl = 4g — 4 such that all fibers of f are irreducible.

Proof. Since X is a rational surface, the Picard number p(X) is equal to by(X) =
dim H?*(X, C). Since b;(X) = 0, Noether’s formula and (2.2) imply that

p(X) =12x(0x) = (K% /pr —8(9 — 1)) — 2,
On the other hand, since f is not locally trivial we can apply the slope inequality (2.5),
which implies that Kg(/Pl > 49 — 4 because A(f) = g. Hence we have p(X) < 4g+6.
This and the formula (1.4) imply that » < p(X) —2 < 4g+ 4. Moreover the equality

r = 49 + 4 holds if and only if Kg(/Pl = 4g — 4 and all fibers of f are irreducible.
Therefore we have the rest of the assertions from Theorem 2.4.

3 Examples of fibrations with the maximal Mordell-
Weil rank

In this section we shall construct examples of rational surfaces with fibration of genus
g > 1 whose Mordell-Weil ranks are maximal.

7



Let 7 : ¥, = P(O & O(e)) — P! be the Hirzebruch surface of degree e with
0 < e < g. The Picard group Pic(X.) or NS(3,) is generated by the classes of a
tautological section C,, and a fiber F, of . The intersection pairings on NS(X,.) are

given as follows:
Cgo =€, (Coo . F()) = ]_, (F0)2 =0.

The minimal section Cj of X, is equal to Co, — eFp in NS(X,), hence C2 = —e. First
we have the following easy lemma.

Lemma 3.1. Seta = g+1—e > 0. Then the linear system |2C,+aFy| is very ample.
Hence a general member D of |2Cy, + aFy| is a non-singular irreducible hyperelliptic
curve of genus g.

Proof. Since a = g+ 1 — e > 0, the first part follows from [Cor. 2.18, V, [H]], and
it implies that the existence of a nonsingular irreducible member D. Since a natural
projection D — P! is a 2-1 map, D is a hyperelliptic curve. Noting that

(3.2) Ky, = —2Cs + (e — 2)F),

we have

g(D)=(Kg, +D)-D/2+1=(g—1)F,-D/24+1=g.
Moreover from the very ampleness of the linear system |2C., + aFp|, we can find its

generic smooth irreducible members Dy and D, which give a Lefschetz pencil on ..
By this we mean that the linear pencil {D;},cp1 given by Dy and D; satisfies the
following conditions: (3.3)

Most of members D; are smooth and every members in the pencil is irre-
ducible and has at most one node as its singularity.

For the existence of Lefschetz pencil, see [SGA 7 II, Exposé XVII].

Next note that Dy - D; = (2Cy + aFp)? = 4e + 4a = 4g + 4 and we can assume
that Dy and D; intersects each other transversely. Therefore we have 4g+4 distinct
points pi,- -, psg+s which are the base points of the pencil. ( We may also assume
that they do not lie on the minimal section Cj and any two of them are not on the
same fiber of 7.)

Under these assumption, let ¢ : X —— X, be the blowing up of the points
D1, ", Pagid, then we obtain the fibration f : X — P of curves of genus g. Sum-
marizing the above results, we have the following proposition.

Proposition 3.4. The fibration f : X — P! obtained as above is a hyperelliptic
fibration of genus g which is not locally trivial. Moreover all fibers are irreducible and
every singular fiber has at most one node as its singularity.



Let F' denote the class of a fiber of f, and E; = ¢*(p;) the exceptional curve dom-
inating the point p;. For simplicity, we also denote the total transforms of C,, Cy, Fy
by the blowing up ¢ by the same letters.

Then the Néron-Severi group NS(X) is isomorphic to the free module

(3.5) NS(X)~Z-Coo®Z Fy & (@517 - E;).
Moreover in the Néron-Severi group NS(X), we have the relation:

4g9+4
(3.6) F=2Cx+aF,— ) E;

=1

Let K = k(P') be the rational function field of P} and let I'/K denote the generic
fiber of f : X — P'. Since all fibers of f are irreducible (Theorem 3.4), the nar-
row Mordell-Weil group Jr(K)° coincides with the whole Mordell-Weil group Jr(K)
(Theorem 1.12).

Proposition 3.7. For a fibration f : X — P! of genus g in Proposition 3.4, we
have
Kg(/lzn == 4g — 4.

Hence f : X — P! is a fibration of curves of genus g whose Mordell-Weil rank is
mazximal, 1.e., equal to 4g + 4.

Proof. Since from (3.2) we have
4g+4 4g+4
=1 =1
we obtain

4g+4

Kxpr=Kx +2F =205+ (2a+e—2)F, — Y E;.
i=1
Therefore we have
K%pi =4e+4(20+e—2)— (49 +4) =49 — 4.

Since all fibers of f are irreducible (Proposition 3.4), the rest of the assertions follow

from this and Theorem 2.8. Q.E.D.

Definition 3.8. A fibration f : X — P! of genus ¢ constructed from the blowing
up of ¥, with 0 < e < g as above is called a fibration of type (g, e).

Now we shall determine the structure of the Mordell-Weil lattice (Jr(K), <,>) of
a fibration f : X — P! of type (g,e). Since (F, E;) = 1, the rational curves {E;}
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become sections of f, and we take E; as the zero section (O). Then by definition and
Proposition 3.4, the trivial sublattice T = T, C NS(X) is generated by the class
of F and the fiber F' of f. From Theorem 1.1, 1.12 and Proposition 3.4, we obtain
isomorphisms of groups:

(3.9) Jr(K)® ~ Jp(K) =~ NS(X)/T.

Moreover from 1.12 and 3.4, the Mordell-Weil lattice (Jr(K), <,>) is isomorphic to

L, where Ly, is the orthogonal complement of the trivial lattlce T, as in §1. The

following proposition determines the structure of the lattice L.

Proposition 3.10. For g > 1 and 0 < e < g, the lattice L, 1s a positive-definite
unimodular lattice of rank 49 + 4 whose Dynkin diagram 1s gzven as follows.

1 2 3 4 4g+2  4g+3
a 4g+4

Figure 1.

Here the numbers in the circles denote the self intersections of elements, and a line
between two circles shows that the paring of two elements is equal to -1.
Moreover L, is an even (resp. odd) lattice if g is odd (resp. even).

Proof. We take an integer m as

2m+1=g+e+1 if g+e+1isodd,
2m=g+e+1 if g+ e+ 1 is even.

Since T}, . is generated by two elements:
4g+4
F_2Coo+(g+1—€F0 ZE“ El,
it is easy to see that the following elements form basis of L, in each case.
Case g+e+1=2m+1:
Hy, = Co —mFy — Ey, Hy = E, — Eg3, Hy = B3 — Ey,
T H4g+3 = E4g+3 - E4g—|—4: H4g+4 = FO - EZ - E3-
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Case g+e+1=2m:

lecoo_mFO: H2=F0—E2—E3, H3=E3—E4,
T H4g+3 = E4g+3 - E4g+47 H4g+4 = E2 - E3-

(The numbers of elements correspond to those in figure 1.)

Then taking the minus sign on the pairing on L/, into account, we can easily
check that the intersection matrix is given by the Dynkin diagram in figure 1 and all
other statements follow from this.

Definition 3.11. From Proposition 3.10, we see that the structure of the lattice
L,. depends only on g, so we denote it by L,. Hence L, is the positive-definite
unimodular lattice of rank 4g + 4 whose Dynkin diagram is given by figure 1.

Remark 3.12. Professor Shioda pointed out to us that the fibrations f : X — P!
in this section can be obtained as special cases of his examples in [Theorem 3, Sh3].

4 Uniqueness of the maximal Mordell-Weil lat-
tice
In this section, we prove the following theorem.

Theorem 4.1. Let X be a rational surface with a fibration f : X — P! of curves
of genus g > 2 which 1s relatively minimal. Assume that the Mordell-Weil rank r
of f is mazimal, i.e., r = 49+ 4. Then f : X — P! is a fibration of type (g,€)
described in §3, that is, it is obtained as a blowing up of a pencil of hyperelliptic
curves on the Hirzebruch surface ¥, with 0 < e < g. In particular, if X 1s rational
and f 1s relatively minimal, the Mordell-Weil lattice arising from a fibration of curves
genus g > 2 with mazimal Mordell-Weil rank is always isometric to L, defined in
Proposition 3.11.

We first recall the following proposition.

Proposition 4.2. Let X be as in Theorem 4.1. Then X 1is a double covering of
P! x P! branched along a smooth curve B of type (29 + 2,2). Moreover the fibration
f: X — P! is induced by the second projection ps.

Proof. From Theorem 2.8, we infer that f : X — P! is a rational hyperellitic
fibration of genus g with the minimal slope A(f) = 4 — 4/g (or equivalently Kgf/Pl =
49 — 4 and all of fibers f are irreducible. Then we recall the following fact. If f :
X — P! is a hyperellitic fibration of genus g with the minimal slope A\(f) = 4—4/g,
there exists a Hirzebruch surface ¥, and a double covering 7 : Y — ¥, such that Y
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has only rational double points as its singularities, and X is the minimal resolution
of Y. Moreover the fibration f is induced by the ruling of ¥, — P!.

For these facts, we refer to the Proof. of [Theorem 2.1, Ho| or [Proposition 2.12, P].
We remark that the slope inequality (2.5) is equivalent to the inequality in [Theorem
2.1, Ho] and [Proposition 2.12, P] and the equality holds for the canonical resolution
Y of YV if and only if all of singularities of the standardized branch locus B of 7 :
Y — ¥, in [Theorem 2.1, Ho| have multiplicities equal to 2 or 3. The later fact
implies that Y has only rational double points as its singularities and Y is the minimal
resolution of Y. Since the original X can be obtained by contracting (-1)-curves on
Y contained in fibers, if A\(f) = 4 — 4/g we see that ¥ = X.

Next we recall the argument of the Proof. of [Lemma 3.2, Tan]. Let 7: Y — ¥,
be a double covering whose branch locus B is linearly equivalent to (2g+2)Cy+2mFy
where Cy, Fy are given as in §3. Since Y has only rational double points as its
singularities, we have (Kyp1)?> = (Kx/p1)? and x(Oy) = x(Ox) = }, we must have

(Kyp1)? = (Ky)* +8(g — 1) = (Kx/p1)® = 49 — 4, or (Ky)> = —4(g — 1).
Since Ky, = —2C, — (e + 2)F, and
(4.2.1) Ky = 7" (Kx, +(1/2)B) = 7*((9 — 1)Co + (m — e = 2) Fy),
we have
(Ky)? =2(=(9—1)%e+2(g—1)(m—e—2)) = =2(g—1)((9+1)e—2m+4) = —4(g—1).

Since g > 1, from this we have (g + 1)e = 2(m — 1). On the other hand, from (4.2.1),
we have m < e + 2 because Y is a rational surface. These imply that e = 0 and
m = 1, or equivalently Y is a double covering of ¥, = P! x P! whose branch locus
B is of type (29 + 2,2). It remains to show that B is smooth which also implies that
X =Y. If B is not smooth, there is a rational curve arising from the resolution of
singularities which lies on a fiber of f. This contradicts to the fact that all fibers of
f are irreducible.

Remark 4.3. In the first version of this paper, we stated that Proposition 4.2 is
true even if ¢ = 1. As the referee pointed out to us, Proposition 4.2 is not true in
the case of ¢ = 1. We have two more cases for (e, m), that is, (1,2),(2,3). (These
cases really occur.) The case (e,m) = (2,3) whose branch locus is Cy + B’ where
B' € |3C| corresponds to the Weierstrass fibration of a rational elliptic surface. Note
that all rational elliptic fibrations with fixed sections are the minimal resolutions of
the Weierstrass fibrations. Moreover if all fibers of an elliptic surface are irreducible,
it is isomorphic to a Weierstrass fibration.

Now we prove Theorem 4.1. Let f : X — P! be a fibration in Theorem 4.1.
Then from Proposition 4.2, we obtain a double covering 7 : X — P! x P! whose
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branch locus B C P! x P! is a smooth curves of type (29 + 2,2). Restricting the
first projection p; of P! x P! to B, we have the double covering pp: B — P It
is easy to see that the genus of B is 2g + 1, hence there are 4g + 4 distinct branched
points of pyjp. Let ¢ : X — P! be a fibration induced from p;. Then this is a conic

bundle with 4g + 4 reducible conics over the branch points of p;p. Let {E} E; it
be irreducible components of these reducible conics such that ¢(E;") = @(E;). It is
easy to see that each curve EZjE is a (-1)-rational curve, hence for each 1 < ¢ < 4g+4,
we can contract one of Ei's and obtain a smooth ruled surface 7 : S — P,

Since all fibers of m are P!, 7 : S — P! is isomorphic to a Hirzebruch surface

b
7 : Y, — P! of degree e for some e. Hence we have a birational morphism ¢ : X —
Y. by contracting one of Eis for all . Let F C X denote a smooth general fiber of
f, and set F' = ¢(F) C X.. Since Es are sections of f, we may assume that F' is

smooth and birational to F'. Using the same notation as in §3, we set
F' = aCy, + (F,.

It is easy to see that (F’, Fy) = 2, hence we have o = 2. By the same calculation as
in Lemma 3.1, we have

g=g(F)=g(F")=((e+ 3 —2)F,2C + BFy)/2+1=¢+ 3 —1.

or
B=g+1—e.

(Cf. Lemma 3.1.) Now setting a = f = g + 1 — e, we proved that F’ belongs to the
linear system |2Cy + aFp| and ¢ : X — X, is the blowing up of base points of a
linear pencil in this linear system. It remains to show that a = g + 1 — e is positive.
Otherwise, (F',Cy) = a is non-positive where Cj is the minimal section. If a < 0,
then Cj is in the base locus of the pencil, which contradicts to the fact the base locus
of the pencil is zero dimensional. If a = 0, let C{, be the proper transform of Cy by
é. It is easy to see that (F,C}) =0 and C2 = (C})? = —e = —g — 1. Hence C} is an
irreducible component of a fiber of f, and since all fibers of f are irreducible we have
(C)* =0%# —g — 1. This is a contradiction.
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