無機薬化学

《担当者名》准教授 / 北浦 廣剛

【概要】

無機化学はすべての元素を網羅する化学であることから、非常に多彩な内容を含んでいる。その基礎知識の修得は無機医薬品の諸性質の理解のみならず、生命関連科目まで含めた薬学の教科の理解のためにも重要である。本講では、無機物質の多様性を明らかにし、その中から類似点や関連性を見出し、分類整理することにより、記憶だけに頼らずに、無機化合物の性質や反応を理解することを目的とする。

【学修目標】

元素の性質と電子構造上の特性とを関連づけて考え、その元素を含む化合物の化学反応性を理解し、無機医薬品・錯体に関する知識と理論を身につける。

【学修内容】

回	テーマ	授業内容および学修課題	担当者
1	水素 1 族典型元素 (アルカリ土類金属) 2 族典型元素 (アルカリ土類金属) 教科書: p105~111	元素としての水素の特徴を説明できる。 アルカリ金属元素およびアルカリ土類金属元素の水 素化物、酸化物の名称、構造、性質を列挙できる。 関連するモデルコアカリキュラムの到達目標 C3-(5)1,2	北浦 廣剛
2	13族典型元素 (ホウ素族) 14族典型元素 (炭素族) 教科書: p112~116		北浦 廣剛
3	15族典型元素 (窒素族) 16族典型元素 (酸素族) 教科書:p117~125	C3-(5)2 窒素、リンの化学について学び、酸化物の名称、構造、性質を列挙できる。 イオウの酸化物の名称、構造、性質を列挙できる。	北浦 廣剛
4	17族典型元素(ハロゲン)	関連するモデルコアカリキュラムの到達目標 C3-(5)2,3 ハロゲンの酸化物の名称、構造、性質を列挙でき	北浦 廣剛
4	18族典型元素(ハロッフ) 18族典型元素(希ガス) 教科書: p126~130	る。 単原子分子としての希ガスの特徴を説明できる。 関連するモデルコアカリキュラムの到達目標 C3-(5)2	AU/用 (庚門)
5	遷移元素(3族~12族) 生体必須元素 教科書:p131~151	代表的な遷移元素を列挙しその特徴を説明できる。 関連するモデルコアカリキュラムの到達目標 C3-(5)1	北浦 廣剛
6	錯体 教科書:p155~164	代表的な錯体の名称、構造、基本的性質を説明できる。 配位原子、配位子、キレート試薬を列挙できる。 関連するモデルコアカリキュラムの到達目標 C3-(5)4	北浦 廣剛
7	錯体 教科書:p165~173	錯体・キレート生成平衡について説明できる。 錯体の反応性について説明できる。 生体内で重要な配位化合物を列挙できる。 関連するモデルコアカリキュラムの到達目標 C2-(2)1、C3-(5)5	北浦 廣剛

回	テーマ	授業内容および学修課題	担当者
8	生体内の金属 活性酸素種 教科書: p182~186	生体内での金属の役割を説明できる。 活性酸素の名称、構造、性質を列挙できる。 分子軌道法の概念を説明できる。 酸素、活性酸素種の電子配置と性質を説明できる。 関連するモデルコアカリキュラムの到達目標 C3-(5)3、C1-(1)2	北浦 廣剛
9	活性酸素種 活性窒素種 教科書:p186~187	活性酸素と活性窒素種(窒素酸化物)の名称、構造、性質を列挙できる。 活性窒素種の電子配置と性質を説明できる。 関連するモデルコアカリキュラムの到達目標 C3-(5)3、C1-(1)2	北浦 廣剛
10	無機医薬品 全体のまとめ 教科書:p187~194	医薬品として用いられる代表的な無機化合物および 錯体を列挙し、役割、性質を説明できる。 関連するモデルコアカリキュラムの到達目標 C3-(5)5	北浦 廣剛

【授業実施形態】

面接授業

授業実施形態は、各学部(研究科)、学校の授業実施方針による

【評価方法】

期末定期試験(100%)で評価する。

講義中の有益な質問箇所については、次回の授業にて全員にフィードバックして共有し、レジュメプリントにも解説を記載して 配布する。試験問題に対する質問に対しても同様に、解説講義にてフィードバックしプリントを配布する。

【教科書】

「無機化学」ベーシック薬学教科書シリーズ4、青木伸編、化学同人 講義に配布するプリント

【参考書】

「無機化合物・錯体-生物無機化学の基礎-」第3版、梶英輔編、廣川書店

【学修の準備】

- ・予習として、指定した教科書の授業範囲を事前に読んでおくこと(50分)。
- ・教科書、授業ノートを活用した復習を行った上で、プリントや教科書にある演習問題を解き、授業内容の理解を深めること(50分)。
- ・基礎となる原子および分子の構造に関する知識・理論は非常に重要であるので、第一学年で学修した「化学-基礎無機化学-」について特に復習しておくこと。

【関連するモデルコアカリキュラムの到達目標】

- C1 物質の物理的性質
 - (1)物質の構造 【 化学結合】【 分子間相互作用】【 放射線と放射能】
- C2 化学物質の分析
 - (2)溶液中の化学平衡 【 各種の化学平衡】
 - (3)化学物質の定性分析・定量分析 【 定性分析】
- C3 化学物質の性質と反応
 - (5)無機化合物・錯体の構造と性質【 無機化合物・錯体】

【薬学部ディプロマ・ポリシー(学位授与方針)との関連】

2. 有効で安全な薬物療法の実践、ならびに人々の健康な生活に寄与するために必要な、基礎から応用までの薬学的知識を修得している。